Jumat, 08 Juni 2012

SOLID STATEBOOSTER 50 WATT



SOLID STATEBOOSTER 50 WATT




Buat para sahabat yang daya penerimaan sinyal TV nya kurang bagus alias banyak semutnya,kaya ane nih yang tinggal sedikit didaerah terpencil,antena tv dah diarahin kesegala penjuru mata angin tetep aja jelek.Anda perlu mencoba membuat rangkaian penguat sinyal TV dengan kekuatan 50 watt.

Perhatikan rangkaian elektronika sederhana dibawah ini :




keterangan :
semua transistor harus diberi sirip pendingan dan pada setiap lilitan usahakan rapat pada setiap lilitan.

Mudah-mudahan bermanfaat.

















Rabu, 06 Juni 2012

Lampu TL Menggunakan Aki 12V

Lampu TL Menggunakan Aki 12V 





Salah satu rangkaian inverter yang sederhana, diaplikasikan untuk kebutuhan penerangan darurat saat PLN mati.
Bentuk sejenis bisa Anda bandingkan.

SELAMAT MENCOBA...

Membuat Trafo BIasa Jadi CT/ Inverter Sederhana dari FBT

TRIK MERUBAH TRAFO BIASA MENJADI TRAFO CT

http://kikiservis.blogspot.com

kali ini saya akan membahas cara mengunakan trafo biasa untuk rangkaian penyearah ct(center tap) perhatikan dengan jelas gambar di atas...
berkadang orang tidak memahami prinsip dasar trafo. Sehingga saat butuh power suply dengan rangkaian ct dia harus beli..trafo ct pada hal dia punya trafo biasa(bukan ct) wah...ini agak lucu..menurut saya.
apa bila kita perhatikanprinsip dasar gulungan ct dan trafo biasa sebenar nya pola gulunganya sama saja. Diatas adalah gambar trafo biasa di mana tegangan 0v ada di pinggir sedang kan pada trafo ct 0v ada di tengah.. pada rangkaian di atas saya membutuh kan tegangan ct 12v ct maka dari itu saya menempatkan center tap nya pada pin 12v pada trafo lalu yang akan di searahkn pin 0v dan 24v....disini pin 0v dan 24 sudah kita anggap 12v mengapa?karena ct nya ada di 12v maka 24-12=12 dan 12-0=12 pembuktianya ukur antara pin 12v dan 24v maka hasilnya 12v lalu ukur pin 12 ke 0v maka hasil nya akan 12v juga..
Bagai mana kalau kita butuh rangkaian 6v ct maka susunan pin nya 0v--6v--12v dan 6v kita jadikn ct.
Kalau butuh 18v maka susunan nya 0v--18v--36v. Dan ct nya ada di pin 18v.
Jika seandai nya pin 36v tidak ada tapi yg ada 32v maka gunakan saja 32v..hasil nya akan sama saja setelah masuk rangkaian penyearah...dan tegangan akan di ratakan oleh kapasitor filter..
Nah..bagai mana menurut anda apakah h
arus beli trafo ct yg harga nya dua kali lipat dari trafo biasa....
Good luck..!

INVERTER TEGANGAN TINGGI


pada postingan kali ini kita akan membuat inverter bertegangan tinggi..lebih 10kv..entah bermanfaat atau tidak tapi banyak sekali yg bertanya dan minta di buat kan rangkaian untuk menaikan tegangan.
perna suatu hari saya berkunjung ke tempat paman saya tepat nya di daerah batu raja sumatra selatan ..nah..di sana saya banyak jumpai kebun yg sekeliling pagar nya di aliri listrik...menurt cerita itu sebagai penghalang babi hutan yg sering merusak tanaman.
Wow...bahaya sekali...apalagi listrik nya dari pln yg daya nya cukup besar...dan sangat mematikn...padahal tujuan awal nya hanya mengejutkan saja.. Nah...!!dari sana sy punya inspirasi untuk menggunakan flyback bekas tv sebagai penaik tegangan .....
Pada rangkaian di atas di saran kan hanya memakai satu buah transistor saja dengan tujuan agar arus atau daya tidak terlalu besar...dan hanya tegangan nya saja yg tinggi sehingga akan menimbulkan efek kejut..(bukan berarti tidak berbahaya)
Di sini saya memanfaatkan flyback bekas tv..karena kalau harus gulung sendiri sngat repot dan tentu biaya akan lebih besar...buatlah rangkaian seperti gambar di atas dan kabel keluaran yg akankita gunakan adalh kabel anoda(tegangan tinggi)
beri keping pendingin trasistr supaya tidak terjadi overheat..
Catatan: semakin besar tegangan input maka makin besar tegangan yg di hasilkn..dan begitu sebalik nya semakin kecil tegangan input maka tegangan yg di hasilkan jg akan kecil.
Semakin besar nilai resistor maka semakin kecil tegangan yg di hasilkan dan daya suply lebih irit.
Hati2 penulis tidak bertanggu jawab atas segala resiko nya.
Good luck...

Selasa, 05 Juni 2012

sirkit Protek LG


Sirkit protek LG yang menggunakan LA76938/41


Sirkit protek LG yang menggunakan IC LA76938/41
  • Protek disensor oleh pin-25 (ABNORMAL) yang dihubungkan ke transistor Q16
  • Tegangan-tegangan sampling dihubungkan ke basis Q16
  • Pada kondisi normal tegangan pada basis Q16 adalah “low” dan tegangan pada pin-25 adalah “high”
  • Untuk melumpuhkan sirkit protek sementara, maka dapat dilepas Q16 (atau men-short basis – kolektor)
Protek disampling dari :
  • OCP (Over current protek). Jika arus yang melalui FR403 pada jalur B+ ke flyback over, maka akan menyebabkan kolektor Q403 tegangan berubah dari nol menjadi “high”
clip_image002
  • Vertikal protek. Jika tidak ada pulsa-pulsa vertikal maka akan menyebabkan basis Q301 tegangan menjadi nol dan kolektor tegangan berubah menjadi “high”
clip_image004
  • X-ray protektor. Jika tegangan flyback naik akan menyebabkan tegangan heater juga naik sehingga menyebabkan tegangan kolektor Q405 berubah dari nol menjadi “high”
clip_image006

***********************

Sirkit protek SAMSUNG dengan LA76931


Sirkit protek SAMSUNG yang menggunakan IC LA76931.
  • Protek terletak pada pin-30 yang disambung ke kolektor Q902
  • Pada kondisi normal tegangan pada basis Q902 adalah “low” dan tegangan pada pin-30 adalah “high”
  • Untuk melumpuhkan protek sementara, maka dapat dilepas Q902 (atau men-short basis dengan emitor)
clip_image002
Protek disampling dari :
  • Vertikal protek. Pulsa-pulsa dari bagian vertikal-out disearahkan oleh diode D355 >>> sehingga pada basis Q904 ada tegangan sekitar 0.6v >>> dan kolektor tegangan 0v.
  • X-ray protek (option). Disampling dari tegangan heater menggunakan sirkit seperti gambar dibawah. Normal tegangan pada jalur x-ray ke basis Q902 adalah nol.
clip_image004
  • ABL protek. Jika terjadi kerusakan pada flyback yang dapat menyebabkan tegangan ABL naik menjadi tinggi, maka protek akan aktip bekerja.



No Vertikal-sync penyebab mikrokontrol mati protek dan video blank

Didalam skema umumnya pin-input mikrokontrol untuk sensor masukan mati protek (yang menyebabkan led kedip) diberi nama “PROT” atau “X-ray”. Tergantung dari modelnya, menurut pengamatan kami sebagai sumber triger tidak selalu sama dan dapat diperoleh antara lain dari :
  • Pulsa-pulsa vertikal yang disearahkan  menjadi tegangan dc dari sirkit vertikal-out (V guard)
  • Pulsa-pulsa dari flyback yang disearahkan menjadi tegangan dc (X-ray atau EHT)
  • Tegangan-tegangan output regulator (misalnya tegangan output 7805, 7809, 7812, atau tegangan 180v)
  • Tegangan ABL (jika tegangan ABL drops protektor kerja)
  • Arus suply B+ (over current)
  • Arus suply bagian vertikal-out (over current)
  • Data memori korup 
Suatu saat kami menjumpai problem mikrokontrol protek (Sony dengan mikrokontrol CXP85224). Kami lacak lewat skema pin-Xray input tidak digunakan. Lalu dari mana sumber yang digunakan  sebagai input kerja protektor? Kami periksa dari skema tidak ada satupun dari contoh sumber-sumber protek diatas dihubungkan ke mikrokontrol.
Setelah cari-cari informasi kesana-sini dan kami coba.
  • Ternyata bahwa mikrokontrol tidak terima sinyal VS (vertikal sync) sebagai penyebab mati protek. Kerusakan disebabkan karena  transistor inverter pada jalur sinyal VS rusak. Sinyal VS dan HS (horisontal sync) paa mikrokontrol umumnya diperlukan sebagai sinyal pembentuk OSD.Pengalaman kami yang lain pada model-model tertentu, tidak ada sinyal VS ke mikrokontrol  dapat menyebabkan sinyal video blank (raster gelap).




Ketika antena dicolokkan pesawat langsung mati protek 



PROBLEM :  Raster dapat hidup normal dengan noise tanpa antena.  Ketika jack antena dicolokkan (ada gambar) pesawat langsung mati protek. Kalau level britnes atau screen dikecilkan kadang problem dapat tidak terjadi lagi.
Ada 2 kemungkinan  sistim protektor yang dapat memicu problem seperti ini, yaitu :
  1. B+ Over current protektor
  2. ABL protektor
1. B+ over current protektor disampling dengan sebuah resistor (nilai beberapa ohm saja) dan sebuah transistor yang dipasang pada jalur B+ ke flyback (Emitor-Basis paralel dengan resistor). Pada kondisi normal  kolektor–emitor transistor pada kondisi “off”. Jika arus yang melalui resistor melebihi dari nilai yang ditentukan, maka kolektor-emitor akan “on” sehingga memicu sirkir protektor aktip bekerja. Kerusakan dapat disebabkan karena nilai resistor molor. Untuk melumpuhkan  protektor dapat dilakukan dengan men-jumper resistor atau melepas transistor
2. ABL protektor disampling dari tegangan ABL. Pada saat noise tegangan ABL normal. Pada saat antena dicolokkan (ada gambar) tegangan ABL akan drops sehingga memicu ABL protektor aktip bekerja.  Kerusakan biasanya disebabkan karena resistor ABL yang dipasang pada arah jalur B+ nilainya molor (nilai umumnya ratusan kilo hingga mega ohm). Untuk melumpuhkan protektor maka hubungan antara sirkit ABL dengan pin-protektor diputus (kalau hubungan menggunakan sebuah diode, lepas diode ini)





Trik melacak sumber penyebab mati protek 2.

Kali ini kami akan bercerita tentang tips dan trik lainnya dalam melacak kerusakan mati protek. Model yang kami hadapi adalah pcb SHARP yang menggunakan IC UOC SMD dengan tipe M61262 (ic surface mount device) dengan problem mati protek beberapa detik setelah teve dihidupkan sehingga raster belum sampai nyala. Model ini adalah merupakan model yang baru pertama kami jumpai, dan kami belum mempunyai skematiknya sama sekali.
 

Trik yang akan kami gunakan adalah dengan melihat “gejala nyala raster” untuk mendapatkan petunjuk bagian mana yang problem. Misalnya jika raster nyala satu garis maka hal ini menunjukkan bahwa problem ada pada bagaian vertikal. 
  • Karena pesawat selalu mati protek dalam beberapa detik, maka tak mungkin kita bisa melihat raster, karena pesawat sudah mati sebelum heater sempat panas.
  • Trik yang kami gunakan adalah memberi tegangan heater dari sebuah tranfo step-down 1Ampere dari luar dengan tegangan 6v AC. Agar nantinya tegangan heater dari flyback tidak crash dengan tegangan ini, maka kami putus hubungan jalur tegangan heater dari flyback dengan cara melepas resistor yang biasa dipasang pada jalur heater. 
  • Sebelum pesawat dihidupkan maka tegangan heater dari luar ini kami hidupkan lebih awal agar heater panas terlebih dahulu. 
  • Sehingga ketika pesawat kami hidupkan, maka raster bisa langsung muncul sesaat. Dan pada contoh kasus yang lagi kami hadapi raster nampak polos putih terang dengan disertai garis-garis blangking.
  • Kami coba kecilkan tegangan screen. Raster tetap nampak polos blangking ketika dicoba hidupkan lagi. 
  • Raster kami kecilkan sampai minim, hasilnya tetap tidak mau gelap. 
  • Maka dari gejala yang ditunjukkan ini, kami langsung memberikan analisa bahwa problem kemungkinan disebabkan karena tidak ada tegangan video 180v. 
  • Ketika kami periksa tegangan tersebut, ternyata memang benar tidak ada. Kerusakan disebabkan karena resistor UFR (unflamable resistor) dari pin-flyback ke diode penyearah 180v putus.
  





Baca artikel terkait
  • Trik melacak sumber mati protek 1
  • Memahami macam-macam sistim protek
  • Kumpulan tulisan para bloger tentang mati protek.

Trik melacak sumber penyebab mati protek 1.

Ini adalah salah satu pengalaman trik kami dalam mencari penyebab protek.
Kali ini kami menerima pasien rujukan mati protek LG model chasis MC994C yang menggunakan mikrokontrol M37211M8-222 yang dikirim pcb-nya saja. Sepengetahuan kami LG sangat jarang menggunakan sirkit protektor, tetapi model yang baru pertama kali kami jumpai ini selalu mati protek setelah dihidupkan beberapa detik.   

  • Langkah pertama yang selalu kami lakukan setiap kali akan merepair suatu model yang baru pertama kali kami jumpai adalah untuk mendapatkan skematik. Tidak bisa mendapatkan skematik chasis ini, tetapi kami bisa mendownload chasis MC994A, dimana mikrokontrol yang digunakan nampaknya sama, yaitu dengan part nomor MC3V211. Kontrol-POWER ON-OFF adalah pin-5 dan PROTEK-input adalah pin-6 (tertulis ABS atau ABNORMAL) yang merupakan B+ Over Current protektor. Pada kondisi normal pin-protek ada tegangan adalah “high” 
  • Langkah kedua kami lumpuhkan sistim protek dengan cara melepas sebuah transistor yang terdapat pada sirkit protektor dengan tujuan agar pin-protek “terkunci” pada pada tegangan “high” terus.
  • Tetapi hasilnya pesawat tetap selalu mati protek, sebelum rasternya sempat menyala.


Pusing kali ini. Apa kira-kira penyebab protek lainnya? Trus mau diapakan lagi?
Setelah sempat tertunda beberapa hari sambil memikirkan apa kira-kira yang memicu sistim proteknya, maka kami ingat salah satu petunjuk penting dalam melacak suatu kerusa, bahwa :

SALAH PETUNJUK KERUSAKAN TEVE DAPAT DIKETAHUI DARI TAMPILAN RASTER

  • Pesawat model ini akan hidup jika tegangan pada kontrol power on-off mikrokontrol berubah dari “low” ke “high”
    Oleh karena itu kontrol power kami “kunci” agar selalu pada tegangan “high” dengan cara meng-“open” pin-POWER (solderan pin-power disedot)
  • Dengan demikian raster dapat menyala terus dengan menaikkan sedikit tegangan screen. Raster menyala polos dan vertikal menyempit. Hal seperti ini biasa terjadi karena pada kondisi ini mikrokontrol belum bekerja.
  • Tombol CH-UP ditekan dan mikrokontrol akan bekerja. Raster menyala normal dengan noise (disini nampaknya memori chanel hilang) selama beberapa detik dan kemudian kembali polos. Hal ini terjadi karena mikrokontrol mati protek. 
  • Kami ulangi hidupkan sambil mengamati raster. Ternyata raster tidak menampakkan tampilan OSD.
  • Maka pelacakan kerusakan kali ini kami fokuskan dahulu pada penyebab OSD tidak muncul. Kami ambil osiloskop dan kami periksa apakah ada pulsa-pulsa pada pin-HS (Horisontal sync) dan pin-VS (Vertikal Sync) pada mikrokontrol yang merupakan syarat utama untuk menampilkan OSD.
  • Ternyata pin-VS tidak ada input pulsa-pulsa dari bagian Vertikal out. Dan penyebabnya adalah kerusakan sebuah resistor pada jalur ini.
  • Setelah resistor kami ganti, OSD langsung muncul. Dan senangnya lagi ternyata mikrokontrol tidak protek lagi. 
Kali ini kami “'baru tahu” jika mikrokontrol LG M37221M8-221 atau MC3V221 akan menyebabkan mati protek jika tidak mendapatkan pulsa-pulsa pada pin-VS. Setahu kami selama ini adalah bahwa jika tidak ada pulsa-pulsa pada pin-VS akan menyebabkan tampilan OSD tidak muncul atau menyebabkan raster gelap.



Baca artikel terkait



  • Trik melacak sumber mati protek 2
  • Memahami macam-macam sistim protek
  • Kumpulan tulisan para bloger tentang mati protek.

Kumpulan pengalaman mati protek dan lampu kedip

Menghadapai kerusakan protek adalah merupakan problem yang kadang cukup menjengkelkan bagi setiap teknisi. Apalagi bagi mereka yang masih minim pengalaman. Susahnya lagi tidak ada standard yang jelas bagian mana yang harus diprotek. Jadi sirkit protek antara model satu dengan model lainnya bisa berbeda. Jalan paling tepat untuk memahami masalah protek ini adalah belajar dari pengalaman. Kumpulan tulisan-tulisan pengalaman para teknisi bloger tentang problem mati protek dan lampu led kedip-kedip perlu dibaca untuk memahami macam-macam problem protek dan solusinya. Kita patut berterima kasih kepada mereka yang telah dengan senang hati membagi pengalamannya.
(
  • Panasonic lampu led kedip-kedip, x-ray protektor (Aisy)
  • ABL protektor Panasonic TC2088 dan TC14P10 (Aisy)
  • Polytron minimax-dipe, vertikal protek (Aisy)
  • Polytron MX5203, vertikal protektor (GBR)
  • Polytron MX 20323, ABL protek (Aisy)
  • Polytron XCEL, ABL protektor (Digitalmas)
  • Polytron protek, data memori korup (ZIC) 
  • Polytron (2kang)
  • Polytron STVxxx protek (Slemania)
  • Toshiba Dramatic V, x-ray protektor (Aisy)
  • Sharp Alexander (Aisy)
  • Sharp Q-vision (Aisy)
  • Sharp IC IX245 (Digitalmas)
  • Sharp TDA93xxx (Slemania)
  • Sharp protek (Slemania)
  • Sharp Wonder protek (Slemania)
  • Sharp Q-vision (Pawi)Sharp Q-beat 21 (Pawi)
  • Samsung Zoom, B+ over voltage protektor (Aisy)
  • Sanyo Flat Slim protek (Slemania)
  • Krystal, memori protek (ZIC)
  • Krystal, data memori korup (Tohari)
  • Kumpulan catatan no pin protek


Kumpulan tulisan para bloger tentang cara kerja sirkit protek
  • Zaenal 1
  • Zaenal 2
  • Digitalmas (Dede)
  • Info dari Lintase blog
  • Solectv
  • achmadmuzaki

Kerusakan mati protek & LED kedip-kedip

Memahami sirkit protektor dan Melacak kerusakan penyebab problem protek


Dokumen ini kami susun dari berbagai sumber dan dari hasil pengalaman kerja pribadi sebagai bengkel service, trainer kursus service radio-tv dan pengalaman bekerja pada sebuah perusahaan elektronik yang pernah mempunyai kerja sama dengan perusahaan Jepang, Korea dan China sebagai manager service station, sebagai manager teknik departemen customer service pusat dalam mengelola dan menyediakan (sumber daya manusia) teknisi. Didedikasikan untuk para teknisi televisi maupun mereka yang lagi belajar. Tujuannya adalah agar dapat berbagi pengetahuan dan pengalaman dalam teknik reparasi tv




Daftar isi :



  • 001     Bagaimana yang dimaksud mati protek atau rusak protek.
  • 002     Protektor x-ray (sinar-x
  • 002.1  Cara kerja protektor x-ray
  • 002.2  Ada beberapa macam sirkit protektor x-ray mematikan pesawat.
  • 002.3  Data beberapa contoh lokasi pin x-ray input IC jungel
  • 003     Protektor over current B+ (OCP)
  • 003.1  Problem-problem yang dapat memicu protektor B+:
  • 004     Protektor-vertikal (istilah lain CRT protektor atau Vertikal Guard atau Neck protektor
  • 004.1  Cara kerja sistim protektor-vertikal
  • 004.2  Problem-problem yang dapat memicu protektor vertikal
  • 005     Protektor tegangan suply
  • 005.1  Melacak kerusakan bagian regulator yang menyebabkan protek
  • 005.2  Problem-problem yang menyebabkan protektor tegangan aktip bekerja
  • 006     Protektor ABL
  • 006.1  Problem-problem yang dapat memicu protektor-ABL
  • 007     Protektor-software
  • 007.1  Problem-problem yang dapat memicu protektor-software
  • 008     Protektor pada sirkit SMPS (power suply).
  • 008.1  Sirkit protektor SMPS yang menggunakan 3 buah transistor
  • 008.2  SMPS yang menggunakan IC (atau hibrid IC)
  • 009     Protektor White-balance SONY
  • 009.1  Problem yang dapat menyebabkan protektor white balance aktip
  • 009.2  3 macam proteksi yang membuat raster gelap pada pesawat merk Sony
  • 010      Data contoh lokasi pin protek-input IC mikrokontrol





001 Bagaimana yang dimaksud mati protek atau rusak protek.
Pesawat televisi yang diperlengkapi dengan sirkit protektor, maka ada beberapa kemungkinan yang dapat terjadi jika terjadi problem pada salah satu sirkitnya.


  • Protek bagian horisontal - Ketika pesawat dihidupkan bagian horisontal akan hidup sebentar, tetapi kemudian mati lagi. Pada saat mati jika diukur pada horisontal driver menunjukkan bahwa tidak ada sinyal drive. Jika colokan listrik dicabut kemudian dicoba diulang dihidupkan lagi maka kejadian serupa akan terulang lagi. Tetapi jika jika basis transistor HOT coba diopen atau transistor HOT dilepas ternyata sinyal drive dapat hidup terus.
  • Protek bagian mikrokontrol - Jika diperiksa tegangan mikrokontrol pada pin kontrol power on-off, ketika pesawat dihidupkan kontrol power mau "on" sebentar kemudian kembali "off". Jika colokan listrik dicabut power mau "on" lagi tetapi sebentar kemudian tetap kembali "off". Pada model-model tertentu kadang pada saat pesawat mati ditandai dengan nyala led indikator yang kedip-kedip
  • Protek tabung gambar - Pesawat dapat dihidupkan tetapi raster gelap. Dicoba tegangan screen dinaikkan raster dapat nyala normal atau nyala 1 garis horisontal.
  • Protek bagian power suply - Pesawat jika dihidupkan tegangan B+ dari power suply ada sebentar tetapi kemudian hilang atau drops. Atau tegangan power suply ada tetapi sedikit drops dan tegangan goyang-goyang, yang disebabkan karena power suply hidup-mati berulang terus menerus.
Ada model televisi yang tidak menggunakan sistim protektor sama sekali, ada yang menggunakan hanya satu sistim protektor, tetapi ada pula yang menggunakan beberapa sistim protektor sekaligus. Sistim protektor sengaja dibuat dengan tujuan tertentu. Melacak kerusakan yang menyebabkan protek kadang menyulitkan, karena pesawat selalu mati sendiri sebelum kita dapat melakukan pengukuran-pengukuran. Dengan mengenal berbagai macam sistim protektor dan memahami cara kerjanya maka akan sangat membantu mengatasi kesulitan-kesulitan ini.
Macam-macam sistim protektor pesawat televisi :


  • Protektor x-ray
  • Protektor vertikal
  • Protektor B+ over current (OCP)
  • Protektor B+ over voltage (OVP)
  • Protektor ABL
  • Protektor tegangan suply (jika short atau putus)
  • Protektor white balance
  • Protektor sirkit power suply (SMPS)


002 Protektor x-ray (sinar-x)
Merupakan sistim protektor yang diterapkan paling awal dalam teknik televisi, oleh karena itu paling banyak dijumpai pada pesawat model-model lama. Jika tegangan tinggi anode tabung gambar dari tranfo flyback melebihi batas yang diperbolehkan, tabung gambar dapat menghasilkan sinar-x dari bagian anode dan shadowmask yang dibombardir oleh elektron-elektron kecepatan tinggi. Untuk menghindari problem ini maka dipasang sikit protektor x-ray, dimana secara otomatis "bagian horisontal akan dimatikan" jika tegangan tinggi dari flyback over.




002.1 Cara kerja protektor x-ray :


  • Tegangan tinggi flyback disampel (umumnya diambil dari pin-heater), disearahkan dan diturunkan menggunakan pembagi (devider) yang menggunakan resistor-resistor jenis presisi tinggi. Tegangan sampel inilah yang digunakan untuk mengetahui apakah tegangan flyback kondisinya normal atau over.
  • Sebuah "diode zener" sebagai sensor dihubungkan ke tegangan sampel ini. Pada kondisi normal besarnya tegangan sampel adalah dibawah nilai tegangan zener sehingga diode pada kondisi "off" atau tidak tembus.
  • Seumpama ada kejadian tiba-tiba tegangan flyback naik - maka tegangan sampel akan naik melebihi nilai tegangan diode, yang menyebabkan diode "on" atau tegangan menembus diode, yang akan memicu protek aktip bekerja.


002.2 Ada beberapa macam cara sirkit protektor x-ray mematikan pesawat.


  • Protektor mematikan bagian horisontal dengan cara men-short-kan tegangan H.Vcc ke ground. Sebuah transistor kolektornya dipasang pada jalur H.Vcc dan emitornya disambung ke ground. Pada kondisi normal basis transistor ini tegangannya adalah nol. Jika tegangan flyback naik dan diode zener tembus, maka basis akan mendapat tegangan positip (0.5V) dari diode zener. Kolektor-emitor transistor akan short sehingga osilator horisontal kehilangan tegangan suply H.Vcc. Contoh adalah model JVC yang menggunakan ic M52016SP.
  • Protektor mematikan bagian horisontal dengan cara men-short-kan ke ground tegangan basis transistor hor-drive, sehingga bagian horisontal mati tidak kerja. Sebuah transistor sebagai protektor kolektornya dipasang pada jalur basis transistor hor-drive dan emitornya disambung ke ground.
  • Perkembangan selanjutnya adalah diproduksinya jenis IC jungel yang mempunyai pin-input untuk x-ray protektor. Pada kondisi normal pin x-ray tegangannya adalah nol. Jika tegangan flyback over maka pin-input X-ray akan mendapat tegangan positip yang akan menyebabkan osilator horisontal tidak kerja (walaupun tegangan H.Vcc mungkin masih ada). IC jungel yang mempunyai fasilitas koreksi EW protektor diinputkan lewat pin-EHT yang berfungsi sebagai kontrol EW sekaligus sebagai input protektor x-ray.
  • Berapa model pesawat ada yang menghubungkan protektor x-ray ke bagian mikrokontrol. Jika x-ray aktip bekerja maka mikrokontrol akan membuat pesawat mati melalui kontrol "power off"
  • Catatan : Banyak model-model yang tidak lagi memasang sirkit protektor x-ray, hal ini disebabkan karena saat ini sudah dapat diproduksi jenis tabung gambar yang hanya sedikit sekali mengeluarkan sinar-X jika tegangan anode melebihi batas.


002.3 Data beberapa contoh lokasi pin x-ray input IC jungel
AN5160 (pin-3), AN5192 (pin-55), AN5195 (pin-55), AN560x (pin-20),
CXA1213 (pin-22), CXA2060 (pin-18), CXA2130 (pin-18), CXA1870 (pin-30),
M51407 (pin-15), M52770 (pin-36)
TA1282 (pin-29), TA7689 (pin-30), TA8690 (pin-20), TA865x (pin-52), TA8719 (pin-52), TA8725 (pin-30)
TDA83xx (pin-50), TDA88xx (pin-50), TDA93xx (pin-36)




002.4 Problem-problem yang dapat memicu protektor x-ray aktip bekerja :


  • Kerusakan bagian power suply yang menyebabkan tegangan B+ over atau salah adjustmen
  • Kapasitor resonan pada kolektor transistor HOT nilai menurun atau solderan lepas
  • Tranfo flyback pengganti yang dipasang tidak cocok.
  • Kerusakan salah satu part pada sirkit sensor protektor x-ray sendiri


003 Protektor over current B+ (OCP)
Pesawat televisi tidak mempunyai protektor B+ OCP, maka dapat tejadi hal-hal sebagai berikut.


  • Jika flyback rusak menyebabkan flyback terbakar dan mengeluarkan asap.
  • Def yoke rusak dapat terbakar dan mengeluarkan asap
  • Jika ada kerusakan flyback atau def yoke dapat menyebabkan transistor HOT rusak.
Protektor B+ OCP dapat dihubungkan kebagian mikrokontrol dan akan memicu mikrokontrol "power off" jika arus B+ ke flyback melebihi batas. Tetapi ada pula yang dihubungkan ke protektor horisontal untuk mematikan osilator. Sensor protektor B+ OCP berupa sebuah "sebuah power resistor dan sebuah transistor" yang dipasang seri pada jalur suply B+ ke flybak. Jika arus yang melalui resistor ini melebihi batas akan menyebabkan adanya "tegangan drops" pada kedua ujung kaki resistor ini dan menyebabkan transistor "on" yang memicu adanya tegangan pada pin x-ray mikrokontrol.




003.1 Problem-problem yang dapat memicu protektor B+ OCP :


  • Kerusakan Flyback
  • Kerusakan Def Yoke
  • Britness gambar over
  • Kerusakan bagian ABL
  • Kerusakan tabung gambar
  • Kerusakan pada sirkit video RGB
  • Tidak ada tegangan 180v
  • Ada kerusakan pada salah satu sirkit yang mengambil suply dari flyback sehingga beban flyback over, misalnya IC vertikal-out short.
  • Kerusakan pada sirkit protektor sendiri.


004 Protektor-vertikal (istilah lain CRT protektor atau Vertikal Guard atau Neck protektor)
Jika bagian defleksi vertikal tidak bekerja, maka raster akan nyala satu garis horisontal. Hal ini dapat menyebabkan lapisan phospor tabung gambar rusak terbakar jika pesawat dibiarkan tetap hidup dalam jangka lama.
Ada beberapa macam sistim hubungan protektor-vertikal :


  • Protektor disambungkan bersama protektor x-ray ke bagian horisontal yang akan memicu osilator horisontal tidak bekerja
  • Protektor disambungkan kebagian mikrokontrol yang akan memicu untuk "power off" sehingga pesawat akan mati secara otomatis atau pesawat tetap hidup tetapi raster menjadi gelap (level britnes diturunkan).


004.1 Cara kerja sistim protektor-vertikal yang dapat dijumpai ada beberapa macam :


  • Menggunakan sampling pulsa-pulsa dari IC vertikal-out yang dihubungkan ke mikrokontrol. Jika mikrokontrol tidak menerima pulsa-pulsa ini maka protektor akan bekerja.
  • Menggunakan sampling dari tegangan suply Vcc IC-vertikal yang dihubungkan ke IC mikrokontrol menggunakan sebuah diode. Pada kondidi normal ada tegangan pada pin-protek IC mikrokontrol. Jika tegangan suply Vcc short atau putus maka tegangan pada pin-protek mikrokontrol akan ikut short ke ground lewat diode dan memicu protek untuk aktip bekerja
  • Menggunakan sampling arus suply IC vertikal-out yang akan aktip bekerja jika arus suply melebihi batas. Sebagai sensor protektor disini dipasang seri sebuah resistor dan sebuah transistor pada jalur suply dimana cara kerjanya mirip dengan OCP.


004.2 Problem atau kemungkinan yang dapat menyebabkan protektor-vertikal aktip bekerja :


  • IC vertikal-out short (rusak)
  • Tidak ada tegangan suply ke IC vertikal-out.
  • Jalur pulsa dari IC vertikal-out ke mikrokontrol putus atau ada part yang rusak
  • Bagian defeleksi vertikal tidak bekerja (kerusakan pada IC jungel)


005 Protektor tegangan suply (regulator).
Jika ada salah satu tegangan rendah tidak mengeluarkan tegangan atau short, maka menyebabkan protektor ini akan aktip bekerja. Tidak semua regulator dipasang protektor. Regulator yang diberi sensor-protektor setiap model tidaklah tentu, misalnya pada tegangan 5V, tegangan 8V, tegangan 12V, tegangan tuner, tegangan penguat audio. Dengan sebuah diode tegangan-tegangan ini dihubungkan ke pin-protek IC mikrokontrol. Pada keadaan normal pin-protek ada tegangan. Jika salah satu regulator rusak tidak mengeluarkan tegangan karena shot atau putus maka tegangan pada pin-protek akan ikut berubah menjadi "nol" dan akan memicu mikrokontrol akan mematikan pesawat "power off"




005.1 Melacak kerusakan bagian regulator yang menyebabkan protektor aktip kadang sedkit sulit dilakukan karena pesawat selalu mati sendiri sehingga kita tidak sempat melakukan pengukuran-pengukuran.
Ada beberapa cara yang dapat dilakukan untuk melacak kerusakan.


  • Ukur tegangan Vcc pada setiap pin-output regulator dengan cara cabut-pasang colokan listrik. Jika ada tegangan kemudian hialng, berarti regulator bagian tersebut tidak masalah.
  • Lepas hubungan diode-diode pada pin-protek (hal ini perlu skematik diagram)
  • Mengunci agar pin-protek selalu dalam kondisi ada tegangan dengan cara melepas hubungan pin-protek ke bagian lain. Cara ini biasanya akan meyebabkan akan ada salah satu part yang terbakar (misalnya IC regulator) jika pesawat dapat menyala.
  • Lacak menggunakan ohm meter untuk mencari bagian regulator yang outputnya short.


005.2 Problem-problem yang menyebabkan protektor tegangan aktip bekerja :


  • Ada salah satu sirkit regulator bagian outputnya short
  • Ada salah satu IC regulator yang rusak (pin-out tidak mengeluarkan tegangan atau short)
  • Ada salah satu IC regulator yang bagian pin-input tidak mendapat tegangan masukan, misalnya disebabkan karena ada resistor atau diode dari tranfo SMPS putus.


006 Protektor ABL
Jika britnes gambar terlalu tinggi dan pesawat dibiarkan terus menerus dalam kondisi seperti ini, maka dapat mengakibatkan :


  • Tranfo flyback kerjanya berat, sehingga beresiko cepat rusak
  • Umur pemakaian tabung gambar menjadi lebih pendek
  • Protektor-ABL digunakan untuk mencegah kedua masalah diatas. Protektor mengambil sampel dari tegangan ABL dan diinputkan ke pin x-ray IC jungel atau ada juga yang diinputkan ke IC mikrokontrol.


006.1 Problem-problem yang dapat memicu protektor-ABL


  • Level britnes over.
  • Kerusakan pada bagian prosesor sinyal video RGB
  • Tidak ada tegangan 180v untuk transistor video drive
  • Adjustmen tegangan screen over
  • Kerusakan tabung gambar (misalnya katode short dengan heater)


007 Protektor-software
Pada saat pesawat dihidupkan pertama kali, mikrokontrol membaca data-data dari IC memori. Kehilangan atau kerusakan data pada IC memori dapat menyebabkan macam-macam problem atau pesawat tidak mau dihidupkan. Pada pesawat model-model baru yang sudah menggunakan komunikasi I2CBus (komunikasi lewat SCL-SDA) dipasang protektor-software yang akan membuat mikrokontrol selalu kembali "power off" jika dihidupkan. Beberapa model ada yang kemudian ditandai dengan "lampu led" yang kedip-kedip (kode-blingking).




007.1 Problem-problem yang dapat memicu protektor-software :


  • IC memori rusak atau isi datanya rusak
  • Jalur komunikasi SDA-SCL ada yang putus atau short
  • Tuner yang dipasang tidak cocok.
  • Ada komponen atau blok pcb modul yang belum terpasang.


008 Protektor pada SMPS (power suply)
Sebagai contoh SMPS paling sederhana yang masih menggunakan 3 buah transistor (C3807, A1015 dan transistor power) problem klasik yang sering terjadi adalah :


  • Problem pada sirkit umpan balik dapat menyebabkan tegangan keluaran B+ over sehingga dapat membahayakan pesawat secara keseluruhan. Misalnya elkonya meletus, pcb gosong terbakar karena over heated, transistor horisontal short.
  • Problem pada sirkit umpan dapat menyebabkan transistor power regulator rusak karena transistor over current (misal disebabkan resistor 47k pada sirkit transistor error detektor pada bagian sekunder nilainya molor).
  • Jika tegangan ac input drops dapat menyebabkan transistor power regulator rusak, karena transistor over current Jika bagian sekunder ada yang short dapat menyebabkan transistor power regulator rusak over current.
Protektor SMPS dirancang untuk membuat agar SMPS "handal tidak mudah rusak" jika ada hal-hal yang tidak beres seperti tersebut diatas. Sirkit SMPS yang menggunakan IC umumnya sudah didesain dengan sistim protektor, yaitu antara lain :


  • Over voltage protektor (OVP)
  • Over current protektor (OCP)
  • Over load protektor
  • Short sirkit protektor
  • Over temperatur protektor


008.1 Sirkit SMPS yang menggunakan 3 buah transistor ada yang sudah diberi protektor "sederhana" untuk mencegah kerusakan transistor power jika sirkit umpan balik ada yang problem. Protektor berupa tambahan sebuah zener diode (umumnya 7.5V) yang diseri dengan sebuah diode biasa pada bagian primer. Kerusakan zener dapat menyebabkan :


  • Tegangan B+ drops
  • Raster mengecil jika tegangan screen dinaikkan
  • Gambar kembang kempis jika level kontras berubah-ubah


008.2 SMPS yang menggunakan IC driver + FET atau hibrid IC (IC driver + FET dalam satu kemasan) sirkit protektor sudah terintregrasi didalam IC. Komponen luar yang mempunyai hubungan dengan bagian protektor hanyalah "sebuah resistor power jenis wirewound" yang biasanya mempunyai nilai kurang dari satu ohm sebagai "sensor over current" untuk mencegah kerusakan power regulatornya.


  • Jika nilai resistor ini berubah menjadi besar maka dapat memicu SMPS protek walaupun kondisinya normal-normal saja
  • Sebaliknya jika nilai resistor ini diganti dengan nilai yang lebih kecil, akan menyebabkan sistim protektor tidak dapat bekerja dengan semestinya
  • SMPS biasanya bekerja "auto start", artinya jika protektor aktip bekerja maka setelah mati akan hidup sendiri lagi. Oleh karena itu SMPS yang problem protek biasanya tegangannya kalau diukur akan goyang-goyang, hal ini disebabkan karena SMPS tersebut dalam kondisi "hidup-mati" sendiri terus menerus.


009 Protektor White-balance SONY
Sepengetahuan kami protektor white-balance hanya  dimiliki oleh merk Sony, dimana tabung gambar akan dibuat gelap jika ada masalah dengan white-balance. Sensor protektor mengambil sampel dari arus IK (AKB) dari ketiga katode RGB.




009.1 Problem yang dapat menyebabkan protektor white balance antara lain adalah :


  • Tabung gambar problem (misal salah satu warna lemah)
  • Adjustmen G2
  • Probelm sirkit RGB amplifier
  • Problem pada sirkit IK (AKB)


009.2 Ada 3 macam proteksi yang membuat raster gelap pada pesawat merk Sony, yaitu


  • Protektor vertikal (problem vertikal)
  • Protektor softwarte (problem komunikasi data SDA/SCL)
  • Protektor white-balance


010 Data contoh lokasi pin protek-input IC mikrokontrol
Polytron chroma TDA8842 (pin-2) protektor vertikal
Polytron HBT 00-02G (pin-42) protektor vertikal
Polytron HBM 00-XX (pin-16) protektor vertikal
Polytron STV2238 (pin-61)
Polytron Onechip STV9302 (pin-62) protektor vertikal


LG M37272 (pin-8)
LG CXP86xx (pin-41)
LG LA76938 (pin-23)


SHARP TDA9381 (pin-8) protektor power suply vertikal dll
SHARP IX245 (pin-63)
SHARP IXC3368 (pin-8)
SHARP IXC080 (pin-63) protektor power suply, (pin-65) protector vertikal, (pin-64) protektor SMPS
SHARP IXC725 (pin-7) protektor power suply, (pin-8) protektor vertikal


SAMSUNG SDA555x (pin-36) protektor vertikal
SAMSUNG TDA12120H (pin-8) protektor vertikal, (pin-43) protektor x-ray


JVC TDA9365 (pin-5)
JVC (pin-13) protektor vertikal, (pin-32) x-ray
JVC MN1873287 (pin-22) protektor audio power suply
JVC M37212M8 (pin-33) protektor regulator 5v, 9v, 11v (pin-48) protektor x-ray


Toshiba OEC7062 (pin-9) protektor B+OVP dan x-ray (heater)
Toshiba OEC7063 (pin-29) protektor B+ OCP dan x-ray (heater)
Toshiba OEC 7074 (pin-8) protektor B+ OCP dan x-ray (heater)
Toshiba OEC 7091 (pin-74) protektor B+ OCP dan x-ray (heater)



TMPA8807CMNG (pin-62) protektor vertikal

POWER AMPLIEIERS

POWER AMPLIFIERS


Audio amplifiers operate either in a BTL (bridged) or single-ended (“normal”) configuration. In the single-ended setup, the output lead goes to the “hot” or “+” side of the load (speaker or speaker box since we are talking audio) and the “-” or “negative” side of the load is tied to a common ground shared with the amplifier. In the BTL configuration, one amp is connected to the “+” side of the speaker (load) and a second amp is connected to the “-” side of the load. For this to work, the output signal from the second amplifier must be a “mirror image” (identical in every respect, but 180 degrees out of phase) of the output from the first amp. The BTL configuration is most often seen in low-voltage, battery-powered applications (like cell phones or “walkman” type personal tape or cd players etc) or in automotive applications over about 10 watts per channel.
In the BTL configuration, each amp drives half the load impedance. With the signals being out of phase, the voltage swing across the load appears to be doubled, and with each amp driving half the impedance the current is doubled. In theory the bridged pair will produce 4 times the power into the load that either amp acting alone could provide. In reality it seldom works that well.
This is an power amplifier circuit of a BTL system, which comprises a first op-amp chip which outputs an output signal having a same phase as an input signal input to a signal input terminal, a second operational amplifier which outputs an output signal having an opposite phase to the input signal, a voltage divider which generates a midpoint voltage of the input signal, a first resistor connected between an output terminal and a negative phase input terminal of the first operational amplifier, second and third resistors connected in series between the negative phase input terminals of the first and second operational amplifiers, a fourth resistor connected between an output terminal and the negative phase input terminal of the second operational amplifier, and an impedance converter connected between a midpoint voltage node of the voltage divider and a series-connection node of the second and third resistors. (end of abstract)
Power Amplifier BTL

Power Amplifier BTL
List Componet:
R1, R2,R3, R4, R6………………… 10kOhm.
R3……………………………………… 20kOhm.
C1, C2, C3, C4……………………… 10µF.
Catu daya (VCC) ±12 V.

STK 4192 Power Amplifier Circuit Features

STK 4192 Power Amplifier Circuit Features
  • The STK4102II series (STK4192II) and STK4101V series (high-grade type) are pin-compatible in the output
  • range of 6W to 50W and enable easy design. Small-sized package whose pin assignment is the same
  • as that of the STK4101II series
  • Built-in muting circuit to cut off various kinds of pop noise
  • Greatly reduced heat sink due to substrate temperature 125°C guaranteed
  • Excellent cost performance
Rangkaian STK 4192 Power Amplifier 50 Watt Stereo

Layout STK 4192 Power Amplifier
Rangkaian STK 4192 Power Amplifier 50 Watt Stereo
Skema Rangkaian STK 4192 Power Amplifier 50 Watt Stereo
Component ListR1___________ 56K? 1/4W Resistor
R2___________ 56K? 1/4W Resistor
R3___________ 1K? 1/4W Resistor
R4___________ 1K? 1/4W Resistor
R5___________ 560? 1/4W Resistor
R6___________ 560? 1/4W Resistor
R7___________ 100? 1/4W Resistor
R8___________ 100? 1/4W Resistor
R9___________ 56K? 1/4W Resistor
R10__________56K? 1/4W Resistor
R11__________3.3K? 1/4W Resistor
R12__________3.3K? 1/4W Resistor
R13__________3.3K? 1/2W Resistor
R14__________3.3K? 1/2W Resistor
R15__________4.7? 1/4W Resistor
R16__________4.7? 1/4W Resistor
R17__________1K? 1/2W Resistor
R18__________1K? 1/4W Resistor C1___________ 400pF Polyester Capacitor
C2___________ 400pF Polyester Capacitor
C3___________ 2.2µF Polyester Capacitor
C4___________ 2.2µF 50V Electrolytic Capacitor
C5___________ 100µF 50V Electrolytic Capacitor
C6___________ 100µF 50V Electrolytic Capacitor
C7___________ 0.1µF 50V Electrolytic Capacitor
C8___________ 0.1µF 50V Electrolytic Capacitor
C9___________ 10µF 50V Electrolytic Capacitor
C10___________ 10µF 50V Electrolytic Capacitor
C11___________ 47µF 50V Electrolytic Capacitor
C12___________ 47µF 50V Electrolytic Capacitor
C13___________ 100µF 50V Electrolytic Capacitor
C14___________ 10µF 50V Electrolytic Capacitor
IC___________ STK4192II Integrated STK Power Amplifier series
power sapply recommend for the STK 4192
Tips that bass sound more felt
according to experience, you have to do a little experiment for you to get the best bass sound, stalwart, gigantic. To get the best bass sound between the subwoofer and the room you, then you should get a ‘pass that point. the following manner:
  1. Place the subwoofer on your location on our seat. (sub Woofer do not be put on the table / cupboard you high more than 1 / 2 meter)
  2. Turn the sub Woofer and you do not forget to disconnect the speaker Amplifier.
  3. Play a song you like, which have gained a good frequency bass
  4. Then try running memutari room, see the characters that appear bass.
  5. You will hear some of the bass sound quality improvements in some corner of the room. This happens due to the interaction between low-frequency space and you. Nah corners you can select as a “node” or the point pas you need to immediately place your subwoofer in a corner of it.

500Watt Power Amplifier

There are some important updates to this project, as shown below. Recent testing has shown that with the new ON Semi transistors it is possible to obtain a lot more power than previously. The original design was very conservative, and was initially intended to use 2SA1492 and 2SC3856 transistors (rated at 130W) – with 200W (or 230W) devices, some of the original comments and warnings have been amended to suit.
Rangkaian 500Watt Power Amplifier Skema Rangkaian 500Watt
 Power Amplifier
Note:
  • This amplifier is not trivial, despite its small size and apparent simplicity. The total DC is over 110V (or as much as 140V DC!), and can kill you.
  • The power dissipated is such that great care is needed with transistor mounting.
  • The single board P68 is capable of full power duty into 4 Ohm loads, but only at the lower supply voltage.
  • For operation at the higher supply voltage, you must use the dual board version.
  • There is NO SHORT CIRCUIT PROTECTION. The amp is designed to be used within a subwoofer or other speaker enclosure, so this has not been included. A short on the output will destroy the amplifier.
Please note that the specification for this amp has been upgraded, and it is now recommended for continuous high power into 4 Ohms, but You will need to go to extremes with the heatsink (fan cooling is highly recommended). It was originally intended for “light” intermittent duty, suitable for an equalised subwoofer system (for example using the ELF principle – see the Project Page for the info on this circuit). Where continuous high power is required, another 4 output transistors are recommended, wired in the same way as Q9, Q10, Q11 and Q12, and using 0.33 ohm emitter resistors.
Continuous power into 8 ohms is typically over 150W (250W for ±70V supplies), and it can be used without additional transistors at full power into an 8 ohm load all day, every day. The additional transistors are only needed if you want to do the same thing into 4 ohms at maximum supply voltage! Do not even think about using supplies over ±70V, and don’t bother asking me if it is ok – it isn.

1000Watt Power Amplifier

This is a circuit of 1000watt power amplifier. This time I don’t have a picture to the circuit board, but because the amplifier circuit is quite simple, you can design it yourself PCB easily or you can order it at the store PCB audio kit in the center of electronic singosaren oriental, solo.amplifier 1000 watt
Skema Rangkaian Sanken 1000 watt


Power Amplifier MJ15003 -MJ15004

When I began the design of this amp, my goal was to make a product better suited for the reproduction of complex music and voice. Although I emphasize the high electrical properties, the most important requirement is to create a superior sound, vivid images and superb spatial aural clarity.Although the average level of listening is usually less than 10 watts, my design concept was to an amplifier with plenty of reserves, but the deviation is for Class A, at the height of the audience of cross-over distortion at a very low level. There is no place in the pathway, enhances the precision of the tonal characteristics of instruments and voices clearly. This Amplifier is virtually zero phase distortion over the audio range resolution is perfect and completely color the sound.
Rangkain Power Amplifier MJ15003 -MJ15004
Skema Rangkaian Power Amplifier MJ15003 -MJ15004
Amplifier Specification:
Maximum Output: 240 watts rms into 8 Ohms, 380 watts rms into 4 Ohms
Audio Frequency Linearity: 20 Hz – 20 kHz (+0, -0.2 dB)
Closed Loop Gain: 32 dB
Hum and Noise: -90 dB (input short circuit)
Output Offset Voltage: >13 mV (input short circuit)
Phase Linearity: > 13 0 (10 Hz – 20 kHz)
Harmonic Distortion: > 0.007% at rated power
IM Distortion: > .009% at maximum power

2000Watt Power Amplifier

Thursday, April 8th, 2010
This power amplifier circuit provides up to 2000Watt, it has to be said that this amplifier will blow up any speaker connected to it. I recommend this as a ‘thought experiment’, rather than actually doing it!. 110V RMS into 8 ohms is 1500 W. How long would you expect the speaker to last? Most will be toast within perhaps 30 seconds or less!
Rangkian Power Amplifier 2000 WattSkema rangkian power amplifier sound system 2000 watt
The transistor Q5 (the bias servo transistor) is mounted on the heatsink, in excellent thermal contact. This is because, unlike most of my other designs, this amp uses conventional Darlington output configuration. It is necessary to use a Darlington arrangement (or a low power Darlington transistor as shown) for Q5 to ensure that the bias remains at a safe value with temperature. There is probably good cause to model and test this aspect of the design very carefully, because it is so important. The arrangement as shown will reduce quiescent current at elevated temperatures. For example, if total Iq at 24°C is 165mA, this will fall to ~40mA at 70°C. This is probably fine, because there is some delay between the a power ’surge’ and the output transistors transferring their heat to the bias servo via the heatsink.
The power supply needed for an amp of this size is massive. Grown welding machines will look at it and cry. For intermittent operation, you need a minimum of a 1000VA transformer (or 1500VA for the 2000W version), and it will have to be custom made because of the voltages used. If you expect to run the amp at continuous high power, then transformers should be 2kVA and 3000VA respectively. Filter capacitors will pose a problem – because you need caps rated for 150V, these will be hard to find. Because high voltage high value caps can be difficult to find, it may be necessary to use two electros in series for each capacitor location. This is the arrangement shown. You must include the resistors in parallel – these equalise the voltage across each capacitor so that they have the same voltage. Remember to verify the ripple current rating! This can be expected to be over 10A, and under-rated capacitors will blow up.
Skema Rangkian Power Supplay 2000 VA
WARNING
This project describes an amplifier, power supply and tests procedures that are all inherently dangerous. Nothing described in this article should even be considered unless you are fully experienced, know exactly what you are doing, and are willing to take full 100% responsibility for what you do. There are aspects of the design that may require analysis, fault-finding and/or modification

Rangkaian 100 watt sub woofer

This is the circuit of subwoofer amplifier. This amplifier can produce an output of 100Watt. There are seven transistors including four in the output stage. The transistors Q1 and Q2 form the preamplifier stage. Transistors Q4 to Q7 form the output stage. Since no ICs are used the circuit is very robust and can be easily assembled on a general purpose PCB.
100 watt sub-woofer amplifierSkema rangkaian 100 watt sub-woofer amplifier
Note:
Use powered a +35V/-35V, 5A dual power supply.
All electrolytic capacitors must be rated 100V.
The transistor Q4 to Q7 must be fitted with heat sinks.
Transistor 2N3773 and 2N6609
Transistor 2N3773 (NPN) and (PNP) 2N6609 are PowerBase_ power transistors designed for high power audio, disk head positioners and other linear applications. These devices can also be used in power switching circuits such as relay or solenoid drivers, DC?DC converters or inverters.
Transistor 2N3773
Features Transistor 2N3773
Pb?Free Packages are Available
High Safe Operating Area (100% Tested) 150 W @ 100 V
Completely Characterized for Linear Operation
High DC Current Gain and Low Saturation Voltage
hFE = 15 (Min) @ 8.0 A, 4.0 V
VCE(sat) = 1.4 V (Max) @ IC = 8.0 A, IB = 0.8 A
For Low Distortion Complementary Designs
MAXIMUM RATINGS Transistor 2N3773
Collector ? Emitter Voltage: 140 Vdc
Collector ? Emitter Voltage: 160 Vdc
Collector ? Base Voltage:160 Vdc
Emitter ? Base Voltage: 7 Vdc
Collector Current Continuous: 16 Adc
Base Current Continuous 15 Adc
Total Power Dissipation : 150 Watt.

Amplifier 300 Watt



Jul 2003 OnSemi released a new range of transistors, designed specifically for audio applications. These new transistors have been tested in the P68, and give excellent results. As a result, all previous recommendations for output transistors are superseded, and the new transistors should be used.
The transistors are MJL4281A (NPN) and MJL4302A (PNP), and feature high bandwidth, excellent safe operating area, high linearity and high gain. Driver transistors are MJE15034 (NPN) and MJE15035 (PNP). All devices are rated at 350V, with the power transistors having a 230W dissipation and the drivers are 50W.
Rangkaian Amplifier 300 WattSkema rangkaian amplif 300 watt
Note:
  • The total DC is over 110V and can kill you.
  • The power dissipated is such that great care is needed with transistor mounting..
  • The amplifier circuit is NO SHORT CIRCUIT PROTECTION. The amp is designed to be used within a subwoofer or other speaker enclosure, so this has not been included. A short on the output will destroy the amplifier.
  • Transistor MJL4281A and MJL4302A are new most constructors will find that these are not as easy to get as they should be. The alternatives are MJL3281/ MJL1302 or MJL21193/ MJL21194.
All three driver transistors (Q4, 5 & 6)must be on a heatsink, and D2 and D3 should be in good thermal contact with the driver heatsink. Neglect to do this and the result will be thermal runaway, and the amp will fail. For some reason, the last statement seems to cause some people confusion – look at the photo below, and you will see the small heatsink, 3 driver transistors, and a white “blob” (just to the left of the electrolytic capacitor), which is the two diodes pressed against the heatsink with thermal grease.

150 Watt OCL Power Amplifier

If you are fanatical about the use of transistors jengkol 2N3055 and MJ2955 then this circuit is the answer. This OCL power amplifier circuit deliver a blasting 150 watt to a 4 Ohm speaker. The amplifier circuit is very cheapest and can be powered from 24 to 32 V/5A dual power supply. You must try this circuit. Its working great. Because Transisitor on the final amplifier will be very hot then add the aluminum finned cooler and the fan so that the transistor is not too high temperaturesRangkaian 150 Watt OCL Amplifier
Skema Rangkaian 150 Watt OCL 
  • Use a well regulated and filtered power supply.
  • Connect a 50K POT in series with the input as volume control if you need.Not shown in circuit diagram
The transistor 2N3055 NPN and MJ2955 PNP are a silicon Epitaxial-Base Planar transistor mounted in Jedec TO-3 metal case. It is intended for power switching circuits, series and shunt regulators, output stages and high fidelity amplifiers.

maximum rating Transistor 2N3055 NPN and MJ2955 PNP
  • Collector-Base Voltage : 100 V
  • Collector-Emitter Voltage: 70 V
  • Collector-Emitter Voltage: 60 V
  • VEBO Emitter-Base Voltage: 7 V
  • IC Collector Current: 15 A
  • IB Base Current: 7 A
  • Total Dissipation: 115 W
  • Storage Temperature: -65 to 200 oC
  • Tj Max. Operating Junction Temperature 200 oC

LM386 0,325W Audio Amplifier


LM386 0,325W Audio Amplifier

LM386 0,325W Audio Amplifier

The LM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value from 20 to 200.
The inputs are ground referenced while the output automatically biases to one-half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the LM386 ideal for battery operation. Features n Battery operation n Minimum external parts n Wide supply voltage range: 4V–12V or 5V–18V n Low quiescent current drain: 4mA n Voltage gains from 20 to 200 n Ground referenced input n Self-centering output quiescent voltage n Low distortion: 0.2% (AV = 20, VS = 6V, RL = 8W, PO = 125mW, f = 1kHz) n Available in 8 pin MSOP package